Redox potential of pheophytin a in photosystem II of two cyanobacteria having the different special pair chlorophylls.

نویسندگان

  • Suleyman I Allakhverdiev
  • Tatsuya Tomo
  • Yuichiro Shimada
  • Hayato Kindo
  • Ryo Nagao
  • Vyacheslav V Klimov
  • Mamoru Mimuro
چکیده

Water oxidation by photosystem (PS) II in oxygenic photosynthetic organisms is a major source of energy on the earth, leading to the production of a stable reductant. Mechanisms generating a high oxidation potential for water oxidation have been a major focus of photosynthesis research. This potential has not been estimated directly but has been measured by the redox potential of the primary electron acceptor, pheophytin (Phe) a. However, the reported values for Phe a are still controversial. Here, we measured the redox potential of Phe a under physiological conditions (pH 7.0; 25 degrees C) in two cyanobacteria with different special pair chlorophylls (Chls): Synechocystis sp. PCC 6803, whose special pair for PS II consists of Chl a, and Acaryochloris marina MBIC 11017, whose special pair for PS II consists of Chl d. We obtained redox potentials of -536 +/- 8 mV for Synechocystis sp. PCC 6803 and -478 +/- 24 mV for A. marina on PS II complexes in the presence of 1.0 M betaine. The difference in the redox potential of Phe a between the two species closely corresponded with the difference in the light energy absorbed by Chl a versus Chl d. We estimated the potentials of the special pair of PS II to be 1.20 V and 1.18 V for Synechocystis sp. PCC 6803 (P680) and A. marina (P713), respectively. This clearly indicates conservation in the properties of water-oxidation systems in oxygenic photosynthetic organisms, irrespective of the special-pair chlorophylls.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Representative Pathways of Excitation Migration in Photosystem I

Photosystem I is a protein-pigment complex that performs photosynthesis in plants, green algae, and cyanobacteria. It contains an aggregate of chlorophylls that absorbs light and delivers the resulting electronic excitation to the special pair of chlorophylls where the excitation energy is used for producing charge separation across the cell membrane. The seemingly random arrangement of chlorop...

متن کامل

Redox potentials of primary electron acceptor quinone molecule (QA)- and conserved energetics of photosystem II in cyanobacteria with chlorophyll a and chlorophyll d.

In a previous study, we measured the redox potential of the primary electron acceptor pheophytin (Phe) a of photosystem (PS) II in the chlorophyll d-dominated cyanobacterium Acaryochloris marina and a chlorophyll a-containing cyanobacterium, Synechocystis. We obtained the midpoint redox potential (E(m)) values of -478 mV for A. marina and -536 mV for Synechocystis. In this study, we measured th...

متن کامل

Pathways and timescales of primary charge separation in the photosystem II reaction center as revealed by a simultaneous fit of time-resolved fluorescence and transient absorption.

We model the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in combination with different charge transfer schemes have been compared using a simultaneous fit of the absorption, linear dichroism, circular dichroism, st...

متن کامل

Photosystem II reaction center with altered pigment-composition: reconstitution of a complex containing five chlorophyll a per two pheophytin a with modified chlorophylls.

Pigment-depleted Photosystem II reaction centers (PS II-RCs) from a higher plant (pea) containing five chlorophyll a (Chl) per two pheophytin a (Phe), were treated with Chl and several derivatives under exchange conditions [FEBS Lett. 434 (1998) 88]. The resulting reconstituted complexes were compared to those obtained by pigment exchange of "conventional" PS II-RCs containing six Chl per two P...

متن کامل

Identification of the special pair of photosystem II in a chlorophyll d-dominated cyanobacterium.

The composition of photosystem II (PSII) in the chlorophyll (Chl) d-dominated cyanobacterium Acaryochloris marina MBIC 11017 was investigated to enhance the general understanding of the energetics of the PSII reaction center. We first purified photochemically active complexes consisting of a 47-kDa Chl protein (CP47), CP43' (PcbC), D1, D2, cytochrome b(559), PsbI, and a small polypeptide. The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 8  شماره 

صفحات  -

تاریخ انتشار 2010